
LA-UR-14-24530
Approved for public release; distribution is unlimited.

Title: New Hash-based Energy Lookup Algorithm for Monte Carlo Codes

Author(s): Brown, Forrest B.

Intended for: American Nuclear Society, 2014 Winter Meeting, 2014-11-09/2014-11-13
(Anaheim, California, United States)

Issued: 2014-06-18

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

New Hash-based Energy Lookup Algorithm for Monte Carlo Codes

Forrest B. Brown
 Los Alamos National Laboratory, Los Alamos, NM, fbrown@lanl.gov

INTRODUCTION

This note provides a new algorithm for energy
lookups during the construction of material cross-sections
in a continuous-energy Monte Carlo code. A new hash-
based energy lookup algorithm provides speedups of 15-
20x over conventional schemes and requires about 1,000x
less memory than unified grid methods. The hashing
scheme is based on a log-energy grid and provides search
bounds for each isotope that greatly reduce the lengths of
energy table searches. It should be useful to code
developers for optimizing the performance of any Monte
Carlo code for particle transport.

Problem Statement

In the Monte Carlo simulation of neutrons, the
macroscopic total cross-section must be constructed for
the material in the current spatial region containing the
neutron. This must be done after every change in energy
(from collisions) or material (from boundary crossings).
Typically, these cross-sections are not precomputed due
to limitations on memory space, but are computed on-the-
fly from the constituent isotopic cross-section data. For
problems with 100s of isotopes in each material, the
construction of the total material cross-section has been
observed to take about 33% or more of overall computing
time for MCNP [1,2] and 85% of the time for OpenMC [3].
The first and most time-consuming part of this
construction involves searching the energy table for each
isotope’s cross-section data to determine the energy bin.
The energy table for an isotope typically has 102-106 bins,
depending on the variation in the cross-sections, number
of resonances, threshold reactions, etc. Each isotope has a
different energy table. Because of the generality and size
of the energy tables, binary searches are always used.
(Binary searches scale as O(logN), while linear searches
scale as O(N), where N is table size.). Typically, 100s of
binary searches in tables of length 102-106 must be
performed after every collision or material boundary
crossing for every neutron, requiring ~1014 binary
searches for a billion-neutron simulation.

Background

Selecting algorithms for a code usually involves
balancing space (memory storage) and time (fewer
operations). The fastest algorithms usually require large
amounts of data to be precomputed and stored; the slower

ones usually compute or search repeatedly to save
memory space.

MCNP has always used the repeated, time-consuming
binary search of all isotopic energy tables to save memory
and preserve full accuracy of the cross-section data tables.
In the 1980s, some codes (e.g., RACER [4]) made use of a
unified energy grid to attain speedups and aid
vectorization. All isotopic cross-section data was
interpolated and averaged onto a single energy table with
104-105 bins. That scheme required only 1 binary search
for a material, rather than 1 for every isotope in the
material. Speedups were impressive, 20-50x faster than
MCNP, due to fewer searches and to vectorization, but the
cross-section remapping in energy introduced
approximations and greatly increased memory
requirements. The unified energy grid could only be used
on problems with small to moderate numbers of isotopes
per material, or few materials. Later, as problem sizes
grew and Monte Carlo depletion became routine, the
unified energy scheme was replaced by on-the-fly
computation. In the early 2000s, Serpent [5,6] used a
unified energy grid, with all material cross-sections
precomputed. That provided significant speedups, but
limited problem size. To preserve accuracy (by not
remapping the cross-sections to fewer energy bins), 5-10
M energy bins are required. To avoid the huge memory
penalty for interpolating and storing all cross-section data
onto such a large energy grid, the unified grid scheme was
enhanced to a “unified grid with pointers” scheme, where
only a single index for each isotope and unified energy
bin was stored. After 1 energy lookup per material, the
indexes for each isotope could be used to retrieve and
interpolate isotopic cross-sections on-the-fly. While only
slightly slower than the previous scheme, the memory
saving was significant. Still, 5-10 M indexes must be
stored for each isotope in the problem, requiring 10-20
GB of memory for depletion problems with 300 isotopes.

HASH-BASED ENERGY LOOKUP ALGORITHM

The new algorithm for energy lookups during
material cross-section construction in MCNP is called a
“hash-based energy lookup.” It was suggested by G.
Zimmerman [7], but turns out to be identical to an energy
lookup scheme used in the 1980s [8], and probably in
other codes before that.

The setup portion of the algorithm, performed prior
to neutron random walks, involves the following steps:

1. Determine the minimum and maximum energy
bounds for the problem, by checking each of the
isotopic cross-section datasets in the problem.
These will be denoted Emin and Emax.

2. Choose a value for M, the number of bins in a
single energy grid with uniform spacing in ln(E)
between Emin and Emax. This energy grid will be
called the ugrid.

3. For each bin in the ugrid, determine and store for
each isotope the bounding indexes k1(u,i) and
k2(u,i) in the energy table for that isotope, where
i is the isotope index and u is the index in the
ugrid.

The ugrid is completely defined by M, Emin , and
Emax, and need not be explicitly stored. Also, because
k2(u,i) = k1(u+1,i)+1, the k2(u,i) values need not be
explicitly stored. The default value for M in MCNP6 was
chosen after some experimentation to be 8,000. This
requires total memory storage of (M+1)I values, where I
is the number of isotopes in the problem. For M=8000 and
250 isotopes, the total memory requirement is only 8 MB.
Larger values for M give improved speed, but the
dependence is weak for M greater than a few 1000.
Smaller values of M reduce the speedup but also reduce
the memory requirements. The value chosen for M does
not in any way affect accuracy of the cross-section data.
The k1 and k2 indexes for each isotope for each of the
ugrid bins are simply the bounds for performing ordinary
binary searches in the isotope datasets. These bounds
narrow the range of the binary searches, so that only a
small portion of the isotopic energy table need be
searched.

During the neutron simulation, a simple hash
function is used to determine the location of a neutron’s
energy in the ugrid. For that bin in the ugrid, the k1 and k2
indexes for each isotope are retrieved and binary searches
are performed in the isotope energy tables in the normal
manner for each isotope. The difference from the previous
energy lookup scheme is simply that the hash function,
ugrid, and k1 and k2 indexes greatly narrow the search
regime to a few isotopic energy table entries, rather than a
more costly search of the entire tables.

Defining umin=ln(Emin), umax=ln(Emax), and
du=M/(umax - umin), the new algorithm for energy lookups
for neutron energy E is:

1. u = 1 + ⎣du·(ln(E)-umin)⎦, where ⎣ ⎦ denotes
truncation to the next lowest integer.

2. For each isotope i, search its energy table
between entries k1(u,i) and k2(u,i).

It should be noted that frequently the search range in
the isotopic energy tables is small, often less than 8. For
such small ranges, a simple linear search scheme will be
slightly faster than a binary search and may provide
additional small speedups.

COMPUTATIONAL TIMING RESULTS

Two tests were carried out to demonstrate the
speedups attained by the new hash-based energy lookup
algorithm. The first involved stand-alone coding focused
solely on measuring the timing for the energy lookups,
while the second involved overall timing measurements
for MCNP6 using different energy lookup schemes.

Timing results for energy lookup

The first test involved stand-alone coding to compare
3 methods: the conventional scheme used by MCNP6 with
an external function for performing binary searches, the
conventional scheme used by MCNP5 with explicit inline
coding for the binary searches, and the new hash-based
scheme with inline binary searches. The energy tables for
9 isotopes from the ENDF/B-VII.1 nuclear data libraries
were used in the comparisons: 1001.80c, 8016.80c,
26056.80c, 92235.80c, 92238.80c, 94239.80c, 94240.80c,
94241.80c, 6000.80c. These isotopes had energy table
sizes ranging from 590 to 157,744. For each energy
lookup scheme, many millions of neutron energies were
randomly sampled in the ugrid range, and then the energy
lookups were performed for all 9 isotopes. Results are
given in Table 1.

From the timing results in Table 1, it can be seen that
ordinary coding optimization (inlining the binary
searches) can provide a speedup of only 10-20%, while
the use of the new hash-based algorithm gives speedups
of 15-20x.

A number of variations on the testing were carried
out. To see the effect of different choices of M, for
example, values of 64k, 32k, 16k, 8k, 4k, and 1k were
used resulting in MacBook timings of 2, 2, 2, 3, 3, and 5
ns/lookup, respectively. For MCNP6.1.1, M=8192 was
chosen as the default. To see the effect of a mixed search
scheme, after the hash-based lookup of bounds, a linear
search was used when table intervals were 8 or fewer and
a binary search when table intervals were greater than 8.
For the stand-alone Mac timing tests, there was no
improvement in speed, so this mixed search scheme was
not implemented in MCNP6.1.1. In all of the stand-alone
testing, all lookup results were checked to verify that they
were exactly the same as those for the conventional
lookup scheme.

It is also interesting to note the timings for 2 different
systems: While the Mac Pro and MacBook used for
testing had the same cpu speed, the speed of the memory
chips gave significantly different timing results. This is
due to the nature of the energy lookup scheme – it is
primarily energy retrieval from memory and comparisons,
with no arithmetic operations. In addition, the new
algorithm is more cache-friendly than the conventional
scheme: there are fewer memory references, and those
references are not as widely dispersed as for the
conventional scheme.

Timing results for MCNP6

It has been reported that MCNP6.1, the initial release
of MCNP6 in 2013, runs significantly slower than MCNP5
[9]. A number of routine coding optimizations were made
to MCNP6.1 and incorporated into the MCNP6.1.1 Beta
release for 2014. The new hash-based energy lookup
algorithm was then included into MCNP6.1.1 as the final
step in the initial code optimization work. Table 2
presents the speedups in MCNP6.1.1 due solely to the new
energy lookup algorithm.

CONCLUSIONS

While the new hash-based energy lookup algorithm
by itself is 15-20x faster than the conventional scheme, it
is only a portion of the overall work and computations
performed by MCNP. The overall speedups due to the new
energy lookup algorithm will vary, depending on the

particular physics and geometry of each problem.
Problems with more collisions per history and more
isotopes per material will show larger speedups; problems
with more tallies, more complicated geometry, or fewer
isotopes per material will show smaller or no speedups.

A particular advantage of the new hash-based energy
lookup algorithm over unified energy grid schemes is the
very significant reduction in memory requirements – MBs
instead of GBs. Such significant memory savings are
important for future generations of computers that are
expected to have very many more processors, but less
memory per processor.

The new hash-based energy lookup algorithm has
been incorporated into the MCNP6.1.1 Beta release in
2014. Currently, the new lookup algorithm is used only
for energy lookups in neutron data tables. Future work
will investigate whether the new algorithm can be
effective for other problems (e.g., photons, light ions).

ACKNOWLEDGMENTS

Discussions of Monte Carlo algorithms and coding
with George Zimmerman were, as always, stimulating
and encouraging, and contributed significantly to the
success of this work.

This work was supported by the US DOE/NNSA
Nuclear Criticality Safety Program and the Advanced
Simulation & Computing Program.

Table 2. MCNP6.1.1 speedups due to new hash-based
energy lookup algorithm.

Problem
Overall
Code

Speedup

OECD Performance Benchmark, 3D PWR, 60
isotopes, no tallies 1.2x

BAW XI(2), ICSBEP Problem LEU-COMP-
THERM-008, Case-2, 31 isotopes, no tallies 1.2x

Godiva problem, 2 isotopes, no tallies 1.0x

Godiva problem, with trace amounts of 421
other isotopes 1.9x

Reactor pin cell with 147 isotopes 1.5x

Porosity tool for well-logging, 5 isotopes 1.0x

Table 1. Timing results for stand-alone test of energy
lookup methods. Results are the average time
for each energy lookup.

Mac Pro,
3 GHz Xeon,
667 MHz mem

MacBook,
3 GHz i7,
1600 MHz mem

MCNP6.1 energy
lookup, with
external binary
search function

97 ns 67 ns

MCNP5 energy
lookup, with explicit
inline binary search
coding

81 ns 57 ns

New hash-based
energy lookup, with
explicit inline binary
search coding

6 ns 3 ns

REFERENCES

1. Forrest Brown, Brian Kiedrowski, Jeffrey Bull,
"MCNP5-1.60 Release Notes", Los Alamos National
Laboratory report, LA-UR-10-06235 (2010).

2. J.T. Goorley, et al., "Initial MCNP6 Release
Overview - MCNP6 version 1.0," Los Alamos
National Laboratory report, LA-UR-13-22934
(2013).

3. J.R. Tramm & A.R. Siegel, “Memory Bottlenecks
and Memory Contention in Multi-Core Monte Carlo
Transport Codes,” Proceedings of SNA+MC 2013,
Paris, France Oct 27-31 (2013).

4. F.B. Brown, "Present Status of Vectorized Monte
Carlo," Trans. Am. Nucl. Soc. 55, 323 (1987).

5. J. Leppänen, "Two practical methods for unionized
energy grid construction in continuous-energy Monte

Carlo neutron transport calculation," Ann. Nucl.
Energy, 36 (2009).

6. J. Leppänen, A. Isotalo, "Burnup calculation
methodology in the Serpent 2 Monte Carlo code,"
Proceedings of PHYSOR-2012, Knoxville, TN, Apr.
15-20 (2012).

7. G. Zimmerman, private communication to F.B.
Brown (2013).

8. D. Austin, KAPL, private communication to F.B.
Brown (~1989).

9. F.B. Brown, B.C. Kiedrowski, J.S. Bull,
"Verification of MCNP6.1 and MCNP6.1.1 for
Criticality Safety Applications," Los Alamos
National Laboratory report, LA-UR-14-22480
(2014).

